Control Of Nonlinear Systems Gipsa Lab-Books Pdf

Control of Nonlinear Systems Gipsa lab
09 Jul 2020 | 2 views | 0 downloads | 182 Pages | 4.15 MB

Share Pdf : Control Of Nonlinear Systems Gipsa Lab

Download and Preview : Control Of Nonlinear Systems Gipsa Lab


Report CopyRight/DMCA Form For : Control Of Nonlinear Systems Gipsa Lab



Transcription

References, Nonlinear systems Khalil Prentice Hall 2002. Nonlinear Probably the best book to start with nonlinear control. Nonlinear systems S Sastry Springer Verlag 1999, N Marchand. Good general book a bit harder than Khalil s, References Mathematical Control Theory E D Sontag Springer 1998. Mathematically oriented Can be downloaded at, http www math rutgers edu sontag FTP DIR sontag mathematical control theory springer98 pdf. Introduction, Linear Nonlinear, Constructive nonlinear control Sepulchre et al Springer 1997 More.
The X4 example focused on passivity and recursive approaches. Linear Nonlinear control systems A Isidori Springer Verlag 1995. approaches, A reference for geometric approach, Antiwindup. Linearization Applied Nonlinear control J J Slotine and W Li Prentice Hall 1991. Gain scheduling, An interesting reference in particular for sliding mode. Research on Gain Scheduling W J Rugh and J S Shamma. approaches, Automatica 36 10 1401 1425 2000, CLF Survey of gain scheduling analysis and design D J Leith and W E. Sliding mode, Geometric Leithead Int Journal of Control 73 1001 1025 1999. Surveys on Gain Scheduling The second reference can be downloaded at. techniques http citeseer ist psu edu leith99survey html. X4 stabilization, N Marchand gipsa lab Nonlinear Control Master PSPI 2009 2010 2 174.
1 Introduction, Control Linear versus nonlinear, N Marchand The X4 example. References 2 Linear control methods for nonlinear systems. Outline Antiwindup, Introduction Linearization, Linear Nonlinear. The X4 example Gain scheduling, approaches 3 Stability. Antiwindup, Linearization, Gain scheduling, 4 Nonlinear control methods. Stability Control Lyapunov functions, Nonlinear Sliding mode control.
approaches, CLF State and output linearization, Sliding mode. Backstepping and feedforwarding, techniques, Stabilization of the X4 at a position. X4 stabilization, 5 Observers, N Marchand gipsa lab Nonlinear Control Master PSPI 2009 2010 3 174. 1 Introduction, Control Linear versus nonlinear, N Marchand The X4 example. References 2 Linear control methods for nonlinear systems. Outline Antiwindup, Introduction Linearization, Linear Nonlinear.
The X4 example Gain scheduling, approaches 3 Stability. Antiwindup, Linearization, Gain scheduling, 4 Nonlinear control methods. Stability Control Lyapunov functions, Nonlinear Sliding mode control. approaches, CLF State and output linearization, Sliding mode. Backstepping and feedforwarding, techniques, Stabilization of the X4 at a position.
X4 stabilization, 5 Observers, N Marchand gipsa lab Nonlinear Control Master PSPI 2009 2010 4 174. Introduction, N Marchand, Some preliminary vocable and definitions. References, What is control, Introduction A very short review of the linear case properties. Linear Nonlinear, The X4 example, design of control laws etc. approaches, Why nonlinear control, Antiwindup, Linearization Formulation of a nonlinear control problem model.
Gain scheduling, representation closed loop stability etc. Nonlinear Some strange possible behaviors of nonlinear systems. approaches, CLF Example The X4 helicopter, Sliding mode. techniques, X4 stabilization, N Marchand gipsa lab Nonlinear Control Master PSPI 2009 2010 5 174. 1 Introduction, Control Linear versus nonlinear, N Marchand The X4 example. References 2 Linear control methods for nonlinear systems. Outline Antiwindup, Introduction Linearization, Linear Nonlinear.
The X4 example Gain scheduling, approaches 3 Stability. Antiwindup, Linearization, Gain scheduling, 4 Nonlinear control methods. Stability Control Lyapunov functions, Nonlinear Sliding mode control. approaches, CLF State and output linearization, Sliding mode. Backstepping and feedforwarding, techniques, Stabilization of the X4 at a position.
X4 stabilization, 5 Observers, N Marchand gipsa lab Nonlinear Control Master PSPI 2009 2010 6 174. Some preliminary vocable, N Marchand, We consider a dynamical system. References, Outline System, Introduction x t, Linear Nonlinear. The X4 example, approaches, Antiwindup, Linearization. y is the output represents what is visible from outside. Gain scheduling the system, Stability x is the state of the system characterizes the state of the.
Nonlinear system, approaches, CLF u is the control input makes the system move. Sliding mode, techniques, X4 stabilization, N Marchand gipsa lab Nonlinear Control Master PSPI 2009 2010 7 174. The 4 steps to control a system, Control yd u y, N Marchand. References Controller, Introduction, Linear Nonlinear Observer. The X4 example, approaches, 1 Modelization, Antiwindup.
Linearization, To get a mathematical representation of the system. Gain scheduling Different kind of model are useful Often. Stability a simple model to build the control law, Nonlinear a sharp model to check the control law and the observer. approaches, Sliding mode, 2 Design the state reconstruction in order to reconstruct. the variables needed for control, techniques, X4 stabilization. 3 Design the control and test it, Observers 4 Close the loop on the real system.
N Marchand gipsa lab Nonlinear Control Master PSPI 2009 2010 8 174. Linear dynamical systems, Some properties of linear system 1 2. Control Definition Systems such that if y1 and y2 are the. N Marchand outputs corresponding to u1 and u2 then R. References y1 y2 is the output corresponding to u1 u2. Outline Representation near the operating point, Introduction Transfer function. Linear Nonlinear, The X4 example, y s h s u s, approaches. Antiwindup State space representation, Linearization. Gain scheduling, approaches, The model can be obtained.
Sliding mode, physical modelization eventually coupled with. identification, techniques, X4 stabilization identification black box approach. Observers both give h s or A B C D and hence the model. N Marchand gipsa lab Nonlinear Control Master PSPI 2009 2010 9 174. Linear dynamical systems, Some properties of linear system 2 2. Control x Ax Bu, N Marchand y Cx Du, References Nice properties. Outline Unique and constant equilibrium, Introduction.
Controllability resp observability directly given by. Linear Nonlinear rank B AB An 1 B resp rank C CA CAn 1. The X4 example Stability directly given by the poles of h s or the eigenvalues. Linear of A asymptotically stable 0, approaches, Local properties global properties like stability. Antiwindup, Linearization stabilizability etc, Gain scheduling. The time behavior is independent of the initial condition. Stability Frequency analysis is easy, Nonlinear Control is easy simply take u Kx with K such that. approaches eig A BK 0 the closed loop system x Ax BKx will. Sliding mode, be asymptotically stable, techniques. Mathematical tool linear algebra, X4 stabilization This is a caricature of the reality of course problems due to.
Observers uncertainties delays noise etc, N Marchand gipsa lab Nonlinear Control Master PSPI 2009 2010 10 174. Why nonlinear control, Why nonlinear control if linear control is so easy. All physical systems are nonlinear because of, N Marchand. Actuators saturations, References Viscosity proportional to speed2. Outline Sine or cosine functions in robotics, Introduction Chemical kinetic in exp temperature.
Linear Nonlinear, The X4 example Friction or hysteresis phenomena. approaches, Antiwindup More and more the performance specification requires. Linearization, Gain scheduling nonlinear control eg automotive. More and more controlled systems are deeply nonlinear. approaches eg nano systems where hysteresis phenomena friction. Sliding mode discontinuous behavior, Nonlinear control is sometimes necessary oscillators. techniques, X4 stabilization cyclic systems, N Marchand gipsa lab Nonlinear Control Master PSPI 2009 2010 11 174.
Nonlinear dynamical systems, How to get a model, Control Representation. N Marchand State space representation, ODE Ordinary differential equation. References, In this course only, Introduction x t f x t u t. Linear Nonlinear, The X4 example y t h x t u t, approaches PDE Partial differential equation traffic flow etc. Antiwindup, Linearization 0 g x t x t f x, Gain scheduling.
0 h y t x t u t, Algebraic differential equations implicit hybrid with. approaches discrete or event based equations etc, Sliding mode The model can be obtained. physical modelization and then nonlinear identification of. techniques, X4 stabilization, the parameters identifiability problems. N Marchand gipsa lab Nonlinear Control Master PSPI 2009 2010 12 174. Nonlinear dynamical systems, Open loop control versus closed loop control. Control u y, N Marchand, References Controller, Introduction.
Linear Nonlinear, The X4 example, Open loop control. approaches find u t such that limt ky t yd t k 0, Antiwindup. Linearization, Gain scheduling Widely used for path planning problems robotics. Closed loop control, approaches, find u x such that limt ky t yd t k 0. Sliding mode Better because closed loop control can stabilize systems and is robust w r t. control perturbation, techniques, X4 stabilization.
In this course, Only closed loop control problems are treated. N Marchand gipsa lab Nonlinear Control Master PSPI 2009 2010 13 174. Nonlinear dynamical systems, Aim of control, Nonlinear xd. Control u y, N Marchand, References Controller, Introduction. Linear Nonlinear, The X4 example, Tracking problem. approaches find u x such that limt kx t xd t k 0, Antiwindup.
Linearization, Gain scheduling Stabilization problem. Stability find u x such that limt kx t xd t k 0 for xd t constant. approaches Null stabilization problem, Sliding mode. find u x such that limt kx t xd t k 0 for xd t 0, control In any cases a null stabilization problem of z t y t yd t. techniques, X4 stabilization In this course, Observers Only the stabilization problem will be treated. N Marchand gipsa lab Nonlinear Control Master PSPI 2009 2010 14 174. Some strange behaviors of nonlinear systems, The undersea vehicle.
Control Simplified model of the undersea vehicle in one. N Marchand direction, References, Introduction, Linear Nonlinear Step answer. The X4 example, approaches, Antiwindup 1, Linearization No proportionality 1 u s s. Gain scheduling, between the input, and the output 0 5. approaches, Sliding mode 0 1 2 3 4 5 6 7 8 9 10, techniques. X4 stabilization, N Marchand gipsa lab Nonlinear Control Master PSPI 2009 2010 15 174.
4 Close the loop on the real system N Marchand gipsa lab Nonlinear ControlMaster PSPI 2009 20108 174 Nonlinear Control N Marchand References Outline Introduction Linear Nonlinear The X4 example Linear approaches Antiwindup Linearization Gain scheduling Stability Nonlinear approaches CLF Sliding mode Geometric control Recursive techniques X4 stabilization Observers Linear dynamical

Related Books

et TEXTE DE LA COMMISSION Senat fr

et TEXTE DE LA COMMISSION Senat fr

pr sentait l un des sept piliers de la cette strat gie qui fixe des objectifs pour la croissance de l Union d ici 2020 Or la Commission y soumettait des orientations dont le principal objectif est de d velopper un march unique num rique afin de conduire l Europe vers une croissance intelligente durable et int gratrice Un projet plus ambitieux a sembl un temps

Qu est ce que le climat scolaire R seau Canop

Qu est ce que le climat scolaire R seau Canop

Leadership vision i futable et claie du pojet de l cole soutien et disponibilit de l administation 3 Parmi les sept facteurs d terminants du climat scolaire les strat gies d quipes constitue un facteur protecteur puissant Que nous dit la recherche Que nous disent les enqu tes de climat scolaire Enseignants et non enseignants 91 6 des enseignants jugent le

Ministerul Educa iei i Cercet rii

Ministerul Educa iei i Cercet rii

Proiect educa ional pentru pre colari De la joc la educa ie financiar Gr dini a cu program prelungit Dumbrava minunat Giurgiu 2016 2017 1 MINISTERUL EDUCA IEI NA IONALE I CERCET RII TIIN IFICE INSPECTORATUL COLAR JUDE EAN GIURGIU Proiect educa ional de educa ie financiar GRADINI A CU PROGRAM PRELUNGIT DUMBRAVA MINUNAT

Programa colar pentru

Programa colar pentru

Anexa nr 2 la ordinul ministrului educa iei na ionale nr 3418 19 03 2013 MINISTERUL EDUCA IEI NA IONALE Programa colar pentru ARTE VIZUALE I ABILIT I PRACTICE

Ministerul Educa iei Culturii i Cercet rii Guvernul

Ministerul Educa iei Culturii i Cercet rii Guvernul

colar a copiilor care n au frecventat grupa preg titoare 3 Raportului despre dezvoltarea fizic socio emo ional cognitiv a limbajului i comunic rii precum i a dezvolt rii capacit ilor i aptitudinilor de nv are la finele grupei preg titoare pentru copiii care au frecventat grupa preg titoare Modificat prin Ordinul nr 149 din 21 martie 2017 7 Copiii pot fi

METODOLOGIE DE NSCRIERE A COPIILOR N NV M NTUL PRIMAR

METODOLOGIE DE NSCRIERE A COPIILOR N NV M NTUL PRIMAR

integrat cu clasa grupa sunt nscri i copii cu cerin e educa ionale speciale care mplinesc v rsta de 8 ani p n la data nceperii anului colar La solicitarea scris a p rin ilor tutorilor legal institui i reprezentan ilor legali pot fi nscri i n clasa preg titoare i copii cu cerin e educa ionale speciale cu v rste cuprinse ntre 6 i 8 ani la data nceperii

Programa colar Edupedu

Programa colar Edupedu

Clasa preg titoare clasa I i clasa a II a Comunicare n limba rom n 2 Not de prezentare Programa disciplinei Comunicare n limba rom n este elaborat potrivit unui nou model de proiectare curricular centrat pe competen e

GR DINI A CU PROGRAM PRELUNGIT NR 53 ORADEA GRUPA

GR DINI A CU PROGRAM PRELUNGIT NR 53 ORADEA GRUPA

GRUPA PREG TITOARE TEMA C ND CUM I DE CE SE NT MPL SUBTEMA N LUMEA INSECTELOR ACTIVITATE INTEGRAT EDUCATOARE MUNTEANU MIRELA PROIECT DE ACTIVITATE INTEGRAT DATA UNITATEA G P P nr 53 Oradea NIVEL II Grupa preg titoare A EDUCATOARE Munteanu Mirela TEMA ANUAL C ND CUM I DE CE SE NT MPL TEMA S PT M NII n lumea insectelor TIPUL

A Alekhine vs E D Bogoljubow World Chess Championship

A Alekhine vs E D Bogoljubow World Chess Championship

105 Chess 5334 Problems Combinations And Games Polgar 1994 1104 pb 106 Chess A History Golombeck 1976 236 hd 107 Chess The Complete Self Tutor Lasker 1972 468 pb 108 Chess And Computers Levy 1976 145 pb 109 Chess Brilliancy 250 Historic Games From The Masters Damsky 2002 224 pb 110 Chess Catechism Evans 1970 250 pb 111 Chess Champion From China The Life and Games of Xie Jun Jun

700 Selected Chess Problems

700 Selected Chess Problems

The Chess Problems contained in this volume are the product of the labour and recreation of some fourteen years I say labour because I am not such a Chess enthusiast as to believe that a col lection such as this can be produced without persistent applica tion partaking of the nature of work and recreation because the work has been a pleasure how great a pleasure only a com

Chess 5334 Problems Combinations and Games

Chess 5334 Problems Combinations and Games

5334 Problems Combinations amp Games ners who may wish to become tournament chess players should play every day even against a chess computer if they do not have a regular partner And the repeated prob lems in the book will repay repeated solving and study The book aims to strengthen the positive skills and discipline needed for