Computer Graphics Spline Computer Graphics-Books Pdf

Computer Graphics Spline Computer Graphics
24 Sep 2020 | 2 views | 0 downloads | 6 Pages | 277.29 KB

Share Pdf : Computer Graphics Spline Computer Graphics

Download and Preview : Computer Graphics Spline Computer Graphics

Report CopyRight/DMCA Form For : Computer Graphics Spline Computer Graphics



Transcription

Computer Graphics Computer Graphics, The basic one. Cubic B Splines, Uniform Cubic B Splines, Cubic B splines with uniform knot vector is the The unweighted spline set of 10 control points 10 splines. 14 knots and but only 7 intervals, most commonly used form of B splines You can see why t3 to t4 is the first interval with a curve. X t t T MQ i for ti t t i 1 since it is the first with all four B Spline functions. where Q i xi 3 xi t9 to t10 is the last interval, t T t ti 3 t ti 2 t ti 1 0 6 8 m t. 10 10 2008, i 3 i Lecture 5 7 10 10 2008 3 4 Lecture 5 8.
Computer Graphics Computer Graphics, Cubic Uniform B Spline. Domain of the function, 2D example, Order k Degree k 1 For each i 4 there is a knot between Qi 1 and Qi at t ti. Initial points at t3 and tm 1 are also knots The following. Control points Pi i 0 m illustrates an example with control points set P0 P9. Knots tj j 0 k m, The domain of the function tk 1 t tm 1 Control point. Below k 4 m 9 domain t3 t t10, 3 m 1 10 10 2008 Lecture 5 10. Computer Graphics Computer Graphics, Uniform Non rational B Splines Uniform Non rational B Splines.
First segment Q3 is defined by point P0 through P3 over the Second segment Q4 is defined by point P1 through P4 over. range t3 0 to t4 1 So m at least 3 for cubic spline the range t4 1 to t5 2. P1 Control point, P1 Control point, 10 10 2008 Lecture 5 11 10 10 2008 Lecture 5 12. Computer Graphics Computer Graphics, The shape of the basis functions. A more general definition, A Bspline of order k is a parametric curve composed of a linear Bi 2 linear basis functions. combination of basis B splines Bi n, Order 2 degree 1. Pi i 0 m the control points, m C0 continuous, Knots tj j 0 k m p t Pi Bi n t.
The B splines can be defined by, 1 t t t i 1, 0 otherwise. Bi k t Bi k 1 t i k Bi 1 k 1 t, ti k Lecture ti k 1 ti. 10 10 2008 13 10 10 2008 http www ibiblio org e notes Splines Basis htm. Lecture 5 14, Computer Graphics Computer Graphics, The shape of the basis functions The shape of the basis functions. Bi 3 Quadratic basis functions Bi 4 Cubic basis functions. Order 3 degree 2 Order 4 degree 3, C1 continuous C2 continuous. 10 10 2008 http www ibiblio org e notes Splines Basis htm. Lecture 5 15 10 10 2008 http www ibiblio org e notes Splines Basis htm. Lecture 5 16, Computer Graphics Computer Graphics, Uniform non uniform B splines Non uniform B splines.
Uniform B splines Blending functions no longer the same for each interval. Advantages, The knots are equidistant non equidistant. Continuity at selected control points can be reduced to. The previous examples were uniform B splines C1 or lower allows us to interpolate a control point. without side effects, t0 t1 t2 t m were equidistant same interval Can interpolate start and end points. Easy to add extra knots and control points, Parametric interval between knots does not Good for shape modelling. have to be equal, Non uniform B splines, 10 10 2008. Computer Graphics Computer Graphics, Controlling the shape through.
Controlling the shape of the curves, control points. Can control the shape through P2, Control points, Overlapping the control points to make it pass First knot shown with 4. through a specific point control points and their, Knots convex hull. Changing the continuity by increasing the, multiplicity at some knot non uniform bsplines. 10 10 2008 Lecture 5 20, Computer Graphics Computer Graphics.
Controlling the shape through, Repeated control point. control points, First two curve segments, First two curve segments shown with their respective. shown with their respective convex hulls, convex hulls. The curve is forced to lie on, Centre Knot must lie in the the line that joins the 2. intersection of the 2 convex convex hulls, P1 P3 P1 P2 P4.
10 10 2008 Lecture 5 21 10 10 2008 Lecture 5 22, Computer Graphics Computer Graphics. Triple control point Controlling the shape through knots. First two curve segments, P0 shown with their respective Smoothness increases with order k in Bi k. convex hulls Quadratic k 3 gives up to C1 continuity. Cubic k 4 gives up to C2 continuity, Both convex hulls collapse. to straight lines all the However we can lower continuity order too with Multiple. curve must lie on these lines Knots ie ti ti 1 ti 2 Knots are coincident and so. now we have non uniform knot intervals, A knot with multiplicity p is continuous to the. k 1 p th derivative, A knot with multiplicity k has no continuity at all i e the.
P1 P2 P3 curve is broken at that knot B t 1 t t t, 0 otherwise. 10 10 2008 Lecture 5 23 10 10 2008 LectureB5i k t Bi k 1 t i k Bi 1 k 1 t 24. t i k 1 ti ti k 1 ti, Computer Graphics Computer Graphics. B Splines at multiple knots Knot multiplicity, Cubic B spline Consider the uniform cubic n 4 B spline curve. Multiplicities are indicated t 0 1 13 m 9 n 4 7 segments. Computer Graphics Knot multiplicity Computer Graphics Knot multiplicity. Double knot at 5, knot 0 1 2 3 4 5 5 6 7 8 9 10 11 12. Triple knot at 5, 6 segments continuity 1, knot 0 1 2 3 4.
5 5 5 6 7 8 9 10, 5 segments, Computer Graphics Computer Graphics. Knot multiplicity Summary of B Splines, Quadruple knot at 5 Functions that can be manipulated by a series of control. points with C2 continuity and local control, 4 segments Don t pass through their control points although can be. Knots are equally spaced in t, Non Uniform, Knots are unequally spaced. Allows addition of extra control points anywhere in the set. 10 10 2008 Lecture 5 30, Computer Graphics Computer Graphics.
Summary cont 2nd Practical, Do not have to worry about the continuity at Use OpenGL to draw the teapot. the join points, You must extend your code in the first. For interactive curve modelling assignment, B Splines are very good. Bonus marks for making it nice, Bump mapping, Texture mapping. Or whatever, Deadline 10th December, 10 10 2008 Lecture 5 31.
Computer Graphics, Reading for this lecture, Foley at al Chapter 11 sections 11 2 3. 11 2 4 11 2 9 11 2 10 11 3 and 11 5, Introductory text Chapter 9 sections 9 2 4. 9 2 5 9 2 7 9 2 8 and 9 3, 10 10 2008 Lecture 5 33. Computer Graphics 10 10 2008 Lecture 5 2 Spline A long flexible strips of metal used by draftspersons to lay out the surfaces of airplanes cars and ships Ducks weights attached to the splines were used to pull the spline in different directions The metal splines had second order continuity Computer Graphics 10 10 2008 Lecture 5 3 B Splines for basis splines B Splines

Related Books

Feature Extraction from Point Clouds Computer Graphics

Feature Extraction from Point Clouds Computer Graphics

Feature Extraction from Point Clouds Stefan Gumhold y Xinlong Wang Scienti c Computing and Imaging Institute University of Salt Lake City Utah Rob MacLeod z Figure 1 a input point cloud b the neighbor graph c point classi cation d crease pattern forming e puri ed crease pattern f spline representation of crease pattern Abstract This paper describes a new method to extract

MOTOR CARRIER PROFILE CA New Update

MOTOR CARRIER PROFILE CA New Update

The California Highway Patrol CHP recommends that upon completion of this Motor Carrier Profile you make a copy for your records prior to mailing the original to the CHP Mail completed Motor Carrier Profile to your nearest CHP Motor Carrier Safety Unit If you received special instructions to mail this profile to another CHP office please mail as requested in those instructions see page

ART CULO DE REVISI N Revisi n del tratamiento del pie

ART CULO DE REVISI N Revisi n del tratamiento del pie

de la columna medial la supinaci n del antepi y la presencia de equinismo Cada paciente presenta una ART CULO DE REVISI N 42 deformidad caracter stica por lo que el tratamiento debe ser individualizado Palabras clave Pie plano adquirido esta dio II insuficiencia tend n tibial posterior os teotom a medializaci n calc neo alargamiento columna ext

El pie normal y su patolog a infantojuvenil m s prevalente

El pie normal y su patolog a infantojuvenil m s prevalente

conocimiento preciso de su anatom a y de los mecanismos biomec nicos 1 Est constituido por 26 huesos y sus articulaciones correspondien tes y se divide en 3 unidades fun cionales Retropi formado por el calc neo y astr galo Mediopi contiene el escafoi des cuboides cu as y la base de los metatarsianos Antepi formado por la parte medial y distal de los metas

Ventana a otras especialidades Deformidadesdel pie

Ventana a otras especialidades Deformidadesdel pie

neiformes y los 3 primeros radios y la columna lateral constituida por el calc neo el cuboides y los 2 ltimos radios del pie Ambas columnas se superponen en la ar ticulaci n talo calc neo navicular La cabeza del astr Ventana a otras especialidades Deformidadesdel pie JES S MU OZ Departamento de Cirug a Ortop dica y Traumatolog a Hospital Infantil Universitario Ni o Jes s

Topograf a osteolog a miolog a de tronco

Topograf a osteolog a miolog a de tronco

equino y bovino Cresta sacral mediana en equino es m s alta que en bovino y est profundamente escotada Cresta sacral media m s evidente en bovino que en equino En equino las alas del sacro poseen carilla articular craneal para su articulaci n con los procesos transversos de L6 Las alas del sacro del bovino son

SINDROME ABDOMEN AGUDO EN EL EQUINO Facultad de Ciencias

SINDROME ABDOMEN AGUDO EN EL EQUINO Facultad de Ciencias

Conducto com n al sistema digestivo y al respiratorio que es asiento de diversas patolog as inflamatorias que posteriormente debido al dolor y molestias durante al alimentaci n llevan al ingreso del alimento al sistema respiratorio Su porci n rostral se une con la boca y la cavidad nasal y su extremo mas peque o se comunica con el es fago

ANATOM A PELVIS Y CADERA Facultad de Medicina UANL

ANATOM A PELVIS Y CADERA Facultad de Medicina UANL

Agujero obturador junto con su arteria Porci n anteromedial de la articulaci n N femoral Medial al psoas Porci n anterior de la c psula Luxaci n anterior RANGOS DE MOVIMIENTO DE ARTICULACI N COXOFEMORAL Extensi n 10 15 Flexi n 120 130 Aducci n 20 30 Abducci n 30 45 Rotaci n externa 40 50 Rotaci n interna 30 45 M SCULOS DE LA CADERA PUBIS T MAYOR

LESIONES TRAUMATICAS DE LA COLUMNA VERTEBRAL Generalidades

LESIONES TRAUMATICAS DE LA COLUMNA VERTEBRAL Generalidades

LESIONES TRAUMATICAS DE LA COLUMNA VERTEBRAL Generalidades Esta es una protocolizaci n para el tratamiento de las principales lesiones por accidentes de trabajo en la columna vertebral El diagn stico y el tratamiento de aquellas que no se encuentren incluidas en el presente Anexo as como las complicaciones se debeefectuar de acuerdo a los c nones establecidos n por la bibliograf a

Exterior y anatom a del caballo Emagister

Exterior y anatom a del caballo Emagister

consta de 205 huesos los cuales se distribuyen en 54 huesos de la columna vertebral 36 costillas 1 estern n 34 huesos a nivel del cr neo incluido huesos del o do 40 en los miembros tor cicos y 40 en los miembros pelvianos Fig 2 2 El esqueleto del caballo Fuente www 3caballos com ZOOTECNIA EQUINA Exterior y Anatom a del Caballo 9 2 1 1 Cabeza La cabeza del animal constituye la