Chapter Procedures In Feed Formulation Higher Education-Books Pdf

Chapter Procedures in Feed Formulation Higher Education
27 Jan 2020 | 80 views | 1 downloads | 18 Pages | 1.66 MB

Share Pdf : Chapter Procedures In Feed Formulation Higher Education

Download and Preview : Chapter Procedures In Feed Formulation Higher Education

Report CopyRight/DMCA Form For : Chapter Procedures In Feed Formulation Higher Education



Transcription

286 Section II Feedstuffs and Formulations, 7 If the ration is complete ask the following questions. a Have all deficiencies been corrected, b Are excesses present. c Is the ration palatable and physically feasible to feed the animal. d Does this appear to be the most economical combination of feeds. e What is the cost of the ration per pound or ton or what does it cost to feed this animal. f What will be needed in addition free choice salt mineral etc. II Simple Techniques in Ration Formulation, The techniques presented here will allow formulation of simple mixtures on the basis of a single nutri. ent protein These techniques can also be used with other procedures to accomplish more complex. formulations of complete rations Our approach shall be to first learn the techniques as applied to sim. ple formulations and then apply v ariations that will allow their application to more complex. formulations, A Using Two Feed Sources, Formulate 100 lbs of a complete swine diet containing 16 crude protein CP The feeds to be. used are corn 8 9 CP and a commercial supplement containing 36 CP. 1 Algebraic equations a system of two equations in two unknowns. a Mathematical procedure, X 5 lbs corn, Y 5 lbs supplement.
equation 1 X 1 Y 5 100 lbs diet, equation 2 0 089X 1 0 360Y 5 16 0 lbs protein 16 of 100 lbs. A third equation is developed to subtract from equation 2 in order to cancel either X or. Y equation 3 is developed by multiplying everything in equation 1 by a factor of 0 089. equation 2 0 089X 1 0 360Y 5 16 0, subtract equation 3 20 089X 2 0 089Y 5 28 9. 0 0 271Y 5 7 1, Y5 5 26 2 lbs supplement, Replace Y with 26 2 in equation 1 X 5 100 2 26 2 5 73 8 lbs corn. 73 8 lbs corn 3 8 9 CP 5 6 57 lbs CP, 26 2 lbs supplement 3 36 0 CP 5 9 43 lbs CP. 100 0 lbs diet 16 00 lbs CP, 2 Pearson square another technique to accomplish the same objective.
a Place the percent protein desired in the combination of the two feeds in the center of a square. and the percent protein content of each feed at the left corners. Corn 8 9 20 0 parts corn, Supplement 36 0 7 1 parts supplement. 27 1 total parts, Chapter 4 Procedures in Feed Formulation 287. b Subtract diagonally across the square the smaller number from the larger without regard to. sign and record the difference at the right corners. c The parts of each feed can be expressed as a percent of the total and these percentages can. be applied to any quantity, 20 0 parts corn, 100 5 73 8 corn and. 27 1 total parts, 7 1 part supplement, 100 5 26 2 supplement. 27 1 total parts, 73 8 3 100 lbs 5 73 8 lbs corn, 26 2 3 100 lbs 5 26 2 lbs supplement.
73 8 lbs corn 3 8 9 CP 5 6 57 lbs CP, 26 2 lbs supplement 3 36 0 CP 5 9 43 lbs CP. 100 0 lbs diet 16 00 lbs CP, e Precautions about using the Pearson square. 1 It can only be used for two feed materials however either or both of these can be mix. tures as long as the percentage of the nutrient of interest has been determined for the. 2 The number in the center of the square must be intermediate to the two numbers at the. left corners For example any combination of a 8 9 protein corn and a 36 protein. supplement would have to have a protein content between 8 9 and 36 Always check. this because the Pearson square will give an answer if the number in the center is not in. termediate to the other two even though such an answer is incorrect This precaution. also applies to algebraic equations, 3 The requirement must be expressed as a percent or proportion and can be used for. any nutrient or expression of energy e g percent protein percent Ca percent TDN. Mcal lb etc, B Using Three or More Feed Sources, Prepare 100 lbs of diet containing 12 protein from a mixture of soybean meal SBM and tank. age 3 parts SBM and 1 part tankage with corn Assume corn to contain 9 0 protein SBM to. contain 44 protein and tankage to contain 60 protein. 1 First we must arrive at a weighted average protein percent for those ingredients that are most. similar in protein content In this case the 3 1 mixture of SBM and tankage. 3 parts SBM 3 44 prot 5 1 32 parts protein, 1 part tankage 3 60 prot 5 0 60 parts protein.
4 parts mix 1 92 parts protein, 1 92 parts protein. 100 5 48 protein, 4 parts mix, 2 Now the Pearson square can be used as before. Corn 9 0 36 0 100 5 92 31 corn, Mix 48 0 100 5 7 69 mix. 288 Section II Feedstuffs and Formulations, a In 100 lbs this means. 92 31 3 100 lbs 5 92 31 lbs corn, 7 69 3 100 lbs 5 7 69 lbs mix.
b The 7 69 lbs mix must be divided into 3 4 75 SBM and 1 4 25 tankage which complies. with the initial proportions of each feed Thus, 92 31 lbs corn 3 0 09 5 8 31 lbs protein. 5 77 lbs SBM 3 0 44 5 2 54 lbs protein, 1 92 lbs tankage 3 0 60 5 1 15 lbs protein. 100 00 lbs diet 12 00 lbs protein, 3 Algebraic equations could also be used to solve this problem. X 5 lbs corn, Y 5 lbs mix 3 1 mixture of SBM tankage. 1 X 1 Y 5 100 0, 2 0 09X 1 0 48Y 5 12 0, 3 20 09X 2 0 09Y 5 29 0.
0 0 39Y 5 3 0, Y 5 5 7 69 lbs mix, X 5 100 2 7 69 5 92 31 lbs corn. C Using Fixed Ingredients, Prepare 1000 lbs of diet from corn 8 9 CP SBM 46 CP and fixed ingredients totaling 10. of the diet e g salt limestone dicalcium phosphate trace mineral premix vitamin premix etc. The final diet should contain 14 CP Assume no protein content in the fixed ingredients. 1 Use of Pearson square, a Find percent protein to use in center of square. 1 The nonfixed portion corn SBM combination is 900 lbs 1000 lbs 3 90 and will. have to supply all the protein 1000 3 14 5 140 lbs protein. 2 To do this by the Pearson square method it is first necessary to calculate what percent. protein will be needed in the corn SBM combination to provide 140 lbs of protein per. 900 lbs as follows, 100 5 15 56 CP, b This figure 15 56 is then used in conjunction with the Pearson square as follows. Corn 8 9 30 44 parts corn 100 5 82 05, SBM 46 0 parts SBM 100 5 17 95.
37 10 37 10, 900 lbs 3 82 05 5 738 45 lbs corn, 900 lbs 3 17 95 5 161 55 lbs SBM. Chapter 4 Procedures in Feed Formulation 289, 738 45 lbs corn 3 8 9 5 65 72 lbs protein. 161 55 lbs SBM 3 46 0 5 74 31 lbs protein, 100 00 lbs fixed 3 0 5 0. 1000 00 lbs ration 5 140 03 lbs protein, 2 Use of algebraic equations for the same problem. X 5 lbs corn, Y 5 lbs SBM, 1 X 1 Y 5 900 0 lbs corn SBM.
2 0 089X 1 0 460Y 5 140 0 lbs CP, 20 089X 2 0 089Y 5 280 1. 0 0 371Y 5 59 9, Y 5 5 161 5 lbs SBM, 5 900 2 161 5 5 738 5 lbs corn. 3 If any of the fixed ingredients contain protein the amount contributed to the diet is calculated. and then subtracted from total quantity needed before formulation by either Pearson square or. algebra Assume the following example Formulate 1 ton 2000 lbs of broiler diet to contain. 20 0 crude protein using the following ingredients. Feedstuff Amount lbs, Ground corn 9 0 CP, Meat and bone meal 50 CP 100 0. Fish meal 65 CP 40 0, Alfalfa meal dehydrated 17 5 CP 40 0. Mineral premix 0 CP 30 0, Vitamin premix 0 CP 20 0.
TOTAL 2000 0, a Determine the total amount of crude protein needed in the formulation. 2000 lbs diet 3 0 20 5 400 lbs CP needed, b Determine the amount of ingredients fixed and the amount of crude protein they. contribute, Fixed ingredients, Meat and bone meal 100 0 lbs 3 0 50 5 50 0 lbs CP fixed. Fish meal 40 0 lbs 3 0 65 5 26 0 lbs CP fixed, Alfalfa meal dehydrated 40 0 lbs 3 0 175 5 7 0 lbs CP fixed. Mineral premix 30 0 lbs 3 0 5 0, Vitamin premix 20 0 lbs 3 0 5 0.
230 0 lbs feed 83 0 lbs CP, Thus 2000 0 lbs 2 230 0 lbs fixed 5 1770 0 lbs nonfixed corn SBM. 400 0 lbs 2 83 0 lbs fixed 5 317 0 lbs CP needed from nonfixed. 290 Section II Feedstuffs and Formulations, c Solve by algebra. X 5 lbs corn, Y 5 lbs SBM, 1 X 1 Y 5 1770 0 lbs corn SBM. 2 0 09X 1 0 44Y 5 317 0 lbs CP, 3 20 09X 2 0 09Y 5 2159 3. 0 0 35Y 5 157 7, Y 5 5 450 6 lbs SBM, X 5 1770 0 2 450 6 5 1319 4 lbs corn.
d Solve by Pearson square, 1 The nonfixed portion corn SBM combination is 1770 0 lbs and will have to supply the. remaining 317 0 lbs CP not contributed by the fixed ingredients 400 0 2 83 0 5 317 0. 2 To do this by the Pearson square it is first necessary to calculate what percent CP will. be needed in the corn SBM combination to provide the 317 0 lbs of protein per 1770 0. lbs as follows, 100 5 17 91 CP, 3 This figure 17 91 CP is then used in conjunction with the Pearson square as. Corn 9 0 26 09 parts corn 100 5 74 54, SBM 44 0 parts SBM 100 5 25 46. 35 00 35 00, 1770 0 3 74 54 5 1319 4 lbs corn, 1770 0 3 25 46 5 450 6 lbs SBM. 1319 4 lbs corn 3 9 0 CP 5 118 75, 450 6 lbs SBM 3 44 0 CP 5 198 26.
230 0 lbs fixed ingredients 5 83 00, 2000 0 lbs diet 400 01 lbs CP. Substitution Method, A process of substituting amount of one ingredient for that amount of another or of substituting in. a new ingredient, 1 Example of an original formulation. Ingredient Amount lbs CP CP lbs, Smooth brome hay 60 0 6 0 3 60. Ground corn 33 0 9 0 2 97, SBM 7 0 46 0 3 22, 100 0 Total 9 79.
Chapter 4 Procedures in Feed Formulation 291, 2 Assume you want to increase the crude protein content to 13 by substituting SBM for corn. Rather than using a trial and error approach establish a one for one substitution. Add in 1 lb SBM 5 10 46 lbs CP, Remove 1 lb corn 5 20 09 lbs CP. Net change in protein 5 10 37 lbs CP, 3 Since you want to increase from 9 79 13 CP you will need 3 21 lbs 13 0 2 9 79 additional. protein in each 100 lb mixture, 4 Thus if each one for one substitution increases CP by 0 37 lbs then. 5 8 68 lbs SBM needed to substitute for 8 68 lbs corn. 5 The revised formulation follows, Ingredient Amount lbs CP CP lbs.
Smooth brome hay 60 00 6 0 3 60, Ground corn 24 32 9 0 2 19. SBM 15 68 46 0 7 21, 100 00 Total 13 00, 6 Another possible substitution would be to replace some of the low protein containing brome. hay 6 CP with a high protein content alfalfa hay 16 CP This substitution would cause a. less drastic change in the energy value of the formulation. a Add in 1 lb alfalfa hay 5 10 16 lbs CP, Remove 1 lb brome hay 5 20 06 lbs CP. Net change in protein 5 10 10 lbs CP, b Thus if each one for one substitution increases CP by 0 10 lbs then. 5 32 1 lbs alfalfa hay to substitute for 32 1 brome hay. c This revised formulation follows, Ingredient Amount lbs CP CP lbs.
Smooth brome hay 27 9 6 0 1 67, Alfalfa hay 32 1 16 0 5 14. Ground corn 33 0 9 0 2 97, SBM 7 0 46 0 3 22, 100 0 Total 13 00. E Simultaneous Algebraic Equations, Useful in calculating what combination of two feeds or two feed groups will provide the required. amount of each of two different nutrients, 1 Assume you want to determine the amounts of corn and SBM needed to meet the daily require. ments of CP and metabolizable energy ME for a 27 3 kg 60 lb pig. 2 Requirements and feed composition, 27 3 kg pig daily requirement 0 272 kg 5390 kcal.
Corn 9 0 3275 kcal kg, SBM 46 0 2825 kcal kg, 292 Section II Feedstuffs and Formulations. 3 Mathematical procedure, X 5 kg corn, Y 5 kg SBM, Protein equation 1 0 09X 1 0 46Y 5 0 272 kg CP. Energy equation 2 3275X 1 2825Y 5 5390 kcal ME, As discussed previously a third equation is developed to subtract from equation 2 to cancel. either X or Y equation 3 is developed by multiplying everything in equation 1 by a factor of. 36 388 89 3275 5 0 09 thus, equation 2 3275X 1 2825Y 5 5390. subtract equation 3 23275X 2 16 739Y 5 29898, 0 2 13 914Y 5 24508.
Y 5 5 0 324 kg SBM, Then solve for X, equation 1 0 09X 1 0 46Y 5 0 272. 0 09X 1 0 46 0 324 5 0 272, 0 09X 1 0 149 5 0 272, 0 09X 5 0 123. X 5 5 1 367 kg corn, 1 367 kg corn 3 9 CP 5 0 123 kg CP. 0 324 kg SBM 3 46 CP 5 0 149 kg CP, 0 272 kg CP, 1 367 kg corn 3 3275 kcal kg 5 4477. 0 324 kg SBM 3 2825 kcal kg 5 915, 5392 kcal ME, 5 The above amounts of corn and SBM could then be used as the basis for formulating a dietary.
mixture for 27 3 kg 60 lb pigs, Daily kg of Diet lbs per Ton. Corn 1 367 80 84 1616 8, SBM 0 324 19 16 383 2, Total 1 691 100 00 2000 0. 6 To produce a properly balanced mixture this diet should be supplemented with a vitamin min. eral supplement, III Formulating Vitamin Premixes, A Premixes are mixtures of microingredients and some type of carrier material. They are added to feeds at the time of mixing to ensure uniform distribution of these ingredients in. mixed feeds, B Commonly used carriers, 1 Soybean meal. 2 Ground grain, 3 Corn gluten meal, 4 Wheat middlings.
5 Several other mill feeds, Chapter 4 Procedures in Feed Formulation 293. A vitamin A and D premix could have these ingredients. 2 Vitamin A concentrate, 3 Vitamin D concentrate, D Development of a vitamin A premix for beef cattle. Objective Prepare 100 lbs of a vitamin A premix to be used at a rate of 20 lbs ton of beef cattle. supplement that is to contain 10 000 IU of vitamin A per pound The vitamin A concentrate se. lected contains 2 million IU gram Soybean SBM will be used as a carrier. 1 Sufficient premix is being prepared to mix 5 tons of supplement thus. 5 3 2000 lbs 5 10 000 lbs of finished supplement, 2 The supplement is to contain 10 000 IU lb then. 10 000 IU 3 10 000 lbs 5 100 000 000 IU required in total. 3 The amount of vitamin A concentrate required is, 100 000 000 IU. 285 Procedures in Feed Formulation Chapter4 C h a p t e r G o a l s Examine feeding standard tables for various livestock Describe and discuss mathematical solutions to animal diet formulation algebra Pearson square substitution

Related Books

How to play Blues Rhythm Guitar like the Blues Masters

How to play Blues Rhythm Guitar like the Blues Masters

If you can t play this already you need to be able to play such a basic blues in riff form and in chords before we continue copyright c Guitar Mastery Solutions Ok I admit we want to move away as quickly as possibly from this kind of guitar playing It gets boring if overused and it sounds quite amateurish But this doesn t mean we have to move away from the idea of using twelve

HUBUNGAN ANTARA RELIGIUSITAS DAN PERSEPSI TERHADAP

HUBUNGAN ANTARA RELIGIUSITAS DAN PERSEPSI TERHADAP

mengetahui apakah terdapat hubungan antara religiusitas dan persepsi terhadap kesehatan dengan kebahagiaan pada pria yang menikah di usia dewasa awal Penelitian ini menggunakan metode penelitian kuantitatif teknik pengumpulan data menggunakan skala likert yaitu skala religiusitas skala persepsi terhadap kesehatan dan skala kebahagiaan Skala religiusitas memiliki 28 aitem dengan nilai

HUBUNGAN ANTARA KELEKATAN TIDAK AMAN DI MASA ANAK ANAK DAN

HUBUNGAN ANTARA KELEKATAN TIDAK AMAN DI MASA ANAK ANAK DAN

Hubungan Antara Kelekatan Tidak Aman di Masa Anak Anak dan Religiositas Dewasa Awal Pada Mahasiswa Fakultas Ilmu Sosial dan Humaniora Universitas Islam Negeri Sunan Kalijaga Yogyakarta Tanpa adanya dukungan bantuan dan partisipasi dari banyak pihak skripsi tersebut tidak terselesaikan dengan baik Secara khusus penulis mengucapkan terima kasih kepada semua pihak yang telah membantu

HUBUNGAN ANTARA RELIGIUSITAS DAN KONTROL DIRI DENGAN

HUBUNGAN ANTARA RELIGIUSITAS DAN KONTROL DIRI DENGAN

Hubungan antara Religiusitas dan Kontrol Diri dengan Kenakalan Remaja di MA Darul Karomah Singosari Malang dapat diselesaikan dengan baik dan tepat waktu Shalawat serta salam tetap tercurahkan kepada Nabi tercinta yaitu Nabi besar Muhammad sallallahualaihi wasallam Limpahkan kehadirat Nabi Muhammad SAW beserta keluarga dan para sahabatnya yang telah mempertaruhkan segala nikmat yang

PROGRAM STUDI SOSIOLOGI FAKULTAS ILMU SOSIAL DAN ILMU

PROGRAM STUDI SOSIOLOGI FAKULTAS ILMU SOSIAL DAN ILMU

HUBUNGAN ANTARA RELIGIUSITAS DENGAN PERILAKU SEKSUAL STUDI KASUS SISWA ISLAM SEKOLAH MENENGAH ATAS TIGA PANDEGLANG SMAN 3 PANDEGLANG LABUAN PANDEGLANG BANTEN Diajukan Untuk Memenuhi Persyaratan Memperoleh Gelar Sarjana Sosial S Sos Oleh Ahmad Egits Giatsudint 1110111000023 PROGRAM STUDI SOSIOLOGI FAKULTAS ILMU SOSIAL DAN ILMU POLITIK

HUBUNGAN ANTARA RELIGIUSITAS DENGAN AUTHENTIC HAPPINESS

HUBUNGAN ANTARA RELIGIUSITAS DENGAN AUTHENTIC HAPPINESS

HUBUNGAN ANTARA RELIGIUSITAS DENGAN AUTHENTIC HAPPINESS PADA JAMA AH MAULID WAT TA LIM RIYADLUL JANNAH MALANG S K R I P S I oleh Abdul Basith NIM 11410090 FAKULTAS PSIKOLOGI UNIVERSITAS ISLAM NEGERI MAULANA MALIK IBRAHIM MALANG 2016 2 HUBUNGAN ANTARA RELIGIUSITAS DENGAN AUTHENTIC HAPPINESS PADA JAMA AH MAULID WAT TA LIM RIYADLUL JANNAH MALANG S K R I P S I Diajukan kepada Dekan

HUBUNGAN ANTARA RELIGIUSITAS DIRI DENGAN KECENDERUNGAN

HUBUNGAN ANTARA RELIGIUSITAS DIRI DENGAN KECENDERUNGAN

hubungan antara religiusitas diri dengan perilaku cybersex pada remaja Skripsi ini menggunakan metode penelitian kuantitatif dengan jenis korelatif Subyek dalam penelitian ini adalah remaja Sekolah Menengah Kejuruan SMK dengan jurusan Teknik Komputer Jaringan TKJ dan sampel yang ditentukan dengan cara purposive sampling Pada penelitian ini terdapat 68 jumlah populasi Dengan subyek

HUBUNGAN ANTARA RELIGIOSITAS DENGAN

HUBUNGAN ANTARA RELIGIOSITAS DENGAN

Hipotesis yang diajukan adalah ada hubungan negatif antara religiositas dengan perilaku seksual pranikah pada remaja Semakin tinggi religiositas maka semakin rendah perilaku seksual pranikah pada remaja demikian pula sebaliknya Subjek penelitian adalah 52 mahasiswa mahasiswi Universitas Katolik Soegijapranata Semarang seluruh fakultas kecuali fakultas psikologi usia 18 21 tahun belum

HUBUNGAN ANTARA RELIGIOSITAS DAN KONTROL DIRI PADA SISWA

HUBUNGAN ANTARA RELIGIOSITAS DAN KONTROL DIRI PADA SISWA

HUBUNGAN ANTARA RELIGIOSITAS DAN KONTROL DIRI PADA SISWA S EKOLAH MENENGAH ATAS ISLAM TERPADU IKHSANUL FIKRI MAGELANG SKRIPSI Diajukan kepada Fakultas Ilmu Sosial dan humaniora Universitas Islam Negeri Sunan Kalijaga Yogyakarta Untuk Memenuhi Sebagian Syarat Memperoleh Gelar Sarjana Strata Satu Psikologi Disusun Oleh JEJE JAELANI

HUBUNGAN ANTARA RELIGIUSITAS DENGAN PENYESUAIAN DIRI DI

HUBUNGAN ANTARA RELIGIUSITAS DENGAN PENYESUAIAN DIRI DI

HUBUNGAN ANTARA RELIGIUSITAS DENGAN PENYESUAIAN DIRI DISEKOLAH PADA SISWA SMP NEGERI 3 PAKEM TAHUN AJARAN 2014 2015 Oleh Nunuk Andriyanti NIM 11104244010 ABSTRAK Penelitian ini bertujuan untuk mengetahui hubungan antara variabel bebas yaitu Religiusitas dengan variabel terikat yaitu Penyesuaian Diri di Sekolah Subjek dalam penelitian ini adalah siswa SMP Negeri 3 Pakem Kabupaten Sleman

HUBUNGAN ANTARA RELIGIUSITAS DENGAN RESILIENSI PADA REMAJA

HUBUNGAN ANTARA RELIGIUSITAS DENGAN RESILIENSI PADA REMAJA

HUBUNGAN ANTARA RELIGIUSITAS DENGAN RESILIENSI PADA REMAJA DI PANTI ASUHAN KELUARGA YATIM MUHAMMADIYAH SURAKARTA Abstraksi Remaja yang tinggal di panti asuhan secara alami mudah tertekan Remaja yang mengalami tekanan akan sulit untuk bangkit dari keterpurukannya Untuk dapat bangkit dari kondisi terpuruknya maka remaja panti harus memiliki resiliensi Resiliensi merupakan kemampuan individu